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Variances for Adaptive Trimmed Means

John E. Boyer, Jr.
Southern Methodist University

ABSTRACT

Variances for adaptive estimators of the location parameter in a

family of symmetric distributions including the uniform, normal, and

double exponential are examined at small to moderate sample sizes. The

estimators are all trimmed means or means of trimmings where the propor-

tion of trimming is determined by an easily computed measure of nonnor-

mality. Comparisons are made to the asymptotic variances.
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1. INTRODUCTION

In a recent article Prescott (1978) discussed the use of adaptive

trimmed means and means of trimmings for estimating a location parameter

from a symmetric family of distributions. The proportion of the sample

trimmed or retained is determined by the value of the quantity Q, a mea-

sure of the length of the tails of the distribution based on the means of

groups of observations from the extremes of the ordered sample.

Asymptotic properties based on the corresponding population quan-

tity, Q, were derived for several different such estimates under the as-

sumption that the underlying distribution belongs to the exponential power

family of distributions. Since the population quantity will not, in prac-

tice, be available, the corresponding properties are examined in the study

below and compae-ed with the values found in Prescott's computations.

2. Asymptotic Variances for Trimmed Means

Let x1 < x2 <...< xn be an ordered sample of size n from a popula-

tion distribution function F(x) and density function f(x). The a-trimmed

mean is defined as

m-a) x.+(l + [n]- n) (x ) " (2.1)
n~c-2 I i= [n[n+2n

The mean of the observations discarded in m(a) is the a-mean of the trimmings,
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denoted mC (a) and is given by

n1 n] l
m (a) - 2 (Xi+x ni+l) + (na-(na])(x (na+l+ Xn[na) (2.2)

It should be noted that the limiting forms for these estimators are commonly

encountered estimators, i.e., m(0.5) is the median, m(0) = mC (0.5) is the

mean and mc (0) is the midrange.

Prescott (1978) considers these estimators for the location parameter

6 in the exponential power family of symmetric distributions defined by the

density function

-- e -= < X < , T > 1. (2.3)

T

2
These distributions are symmetric about 8 with variance T = r(3/T)/r(l/T).

T
1If we regard y = - as a continuous parameter in the interval (0,1], this

family may be thought of as containing distributions which change gradually

from the uniform (y=0), through short-tailed symmetric distributions to the
1

normal (y = 1), then through long-tailed symmetric distributions to the
2

double exponential (y=l).

Prescott discusses the robustness properties and derives the asymp-

totic variances for m(a) and mc (a) for distributions belonging to this family

by using influence curve techniques. As all of the above estimators are

unbiased for 9 in all of the distributions belonging to the exponential

power family, the asymptotic variance of the particular estimator, when

compared to the Cram~r-Rao lower bound, provides a measure of the efficiency

of the estimation.

As different estimators from the family of trimmed means and means-

of-trimmings are more efficient depending on which member of the exponential

family is being considered, adaptive estimation techniques enter in a natural

way. In particular, several statistics which choose a trimming proportion a
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based on the measure of nonnormality (or tailweight)

+U (. 05) 0 5))/(U(. 05 ) L(. 5 0 )) (2.4)

proposed by Hogg (1974), where U (L ) is the average of the largest

(smallest) n8 order statistics, with fractional items used if nB is not

an integer, are presented as poss'ible adaptive estimators for the expo-

nential power family. The choice of Q over other measures of nonnormality

or tailweight such as sample kurtosis is discussed in detail in Hogg (1972,

1974) and Davenport (1971) and the choice of the particular 5% and 50% pro-

portions and some asymptotic properties for Q are discussed there.

Prescott's computations of the variances of the above suggested

trimmed means are, however, based on knowledge of Q, the population quantity

which corresponds to Q. Nevertheless, it is clear that in this situation,

Q would not be known to the statistician or there would be no need to adapt

in the first place.

Parr (1979) points out that the variance of an adaptive estimator will

be dependent on the relative frequency with which the adapting statistic, Q

picks different trimming proportions. That is, the appropriate variances

to consider for the various adaptive estimators are the weighted sums of the

conditional variances, where the weights are the proportion of observations

that yield the corresponding values of Q, and the conditioning is on the ob-

served Q. Since Prescott's estimates of the variances use only the trimmed

mean or mean-of-the trimmings which appears to do best or "nearly" best for a

given member of the exponential power family, they do not truly reflect the

adaptive nature of the statistics. The results of taking that aspect of the

statistic into account will be seen in the simulation discussed below.

Analytically, if T is the trimmed mean chosen by the adaptive proce-

dure, then Var T - E{Var[TIQ]2 + Var{E[TIQ]). However, since all the trimmed

means are symmetric estimators and all of the members of the exponential
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family are symmetric distributions, E[TIQ] so and thus the second term will

always be zero. If TQ is chosen to (nearly) minimize Var[TQ 1, then

Var[T1Q] > Var[T Q], so Var T= Var CTIQ] >Var[T Q. Thus the asymptotic

variances given by the influence curve calculations will in general be

smaller than the variances which can be achieved in practice, and the

difference can be attributed to the problem of estimating Q.

3. Adaptive Trimmed Means

The adaptive estimators investigated in the simulation study discussed

below are the same as those presented in Prescott. The first is an estimator

suggested by Hogg (1974) given by

m ( ) Q < 2.0
4^

m(0) 2.0 < Q < 2.6
TI= (3.1)

m(3/16) 2.6 < Q < 3.2

m(3/8) 3.2 < Q

The second is an estimator suggested by Prescott (and denoted by T* in that

article)

c
m (.2) Q < 2.2

c^

m C(.3) 2.2 < Q < 2.4
T2- m(0) 2.4 < Q < 2.8 (3.2)

m(.2) 2.8 < Q < 3.0

m(.3) 3.0 < Q

The third, also suggested by Prescott, and denoted byT** there,is an extension

of the notion that more intervals for Q would produce asymptotic variances

closer to the minima suggested by the Cram4r-Rao bounds. Thus the statistic

below adapts or adjusts continuously rather than in a step-wise fashion.



5
mC(o)-midrange Q < 1.9

m [(Q-1.9).0.7)] 1.9 < Q < 2.6
T m0 (3.3)

m[(Q-2.6)'0.7] 2.6 < Q < 3.3

m(.5)-median 3.3 < Q

The simulation consisted of 2000 repetitions for each of the three

statistics suggested above, at each of the nine parameter values y= 0()1

and at each of the three sample sizes n= 0, 20, and 40. The results of

the simulation as well as the asymptotic variances provided by the influence

curve calculations and the values of the Cram~r-Rao lower bound appear in

Table 1. In addition figures A, B and C are graphs of the corresponding

data for the estimators T1, T2, and T3 respectively, using diagrams as in

Prescott's work.

4. Properties of the Variances of m(a) and mc (a)

Since the adaptive estimator chosen is dependent on the value Q,

estimation of Q is of interest in its own right. Davenport has shown

that for the uniform, normal and double exponential distributions, Q is

asymptotically distributed as a normal random variable with mean Q and finite

variance. In the appendix to this paper, the condition on the distribution

required for that result is shown to hold for any member of the exponential

power family.

As seen in Figure D, the tendency is for Q to underestimate Q at

small to moderate sample sizes. The results graphed there are the true

values of Q minus the averages of Q obtained from 2000 samples of the given

sample size. Additionally, it is clear that the magnitude of the underesti-

mation increases as Q or Xl/T) increases, for any of the sample sizes studied.

This underestimation is a substantial factor in the variance calculations.
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As an example of the point illustrated in Section 3, consider the

estimator T2 at 1/T= 5/8 with samples of size 20. For this parameter con-

figuration Q is 2.77 so the asymptotic results are based on the sample mean,

which has (standardized) variance 1.0. In 2000 samples, however Q was less

than 2.4 715 times, between 2.4 and 2.8 699 times, and larger than 2.8 586

times. Thus the sample mean is chosen only about 35% of the time, in

practice. The observed variance of 1.1222 reflects the fact that the 65%

of the time when estimators other than m(0) are chosen the variance will

be larger than that of m(0), which is nearly best among trimmed means and

means of trimmings.

On the other hand when the adaptive estimator does not choose a nearly

optimal trimming proportion, the finite sample results may give variances

which are smaller than those suggested by the asymptotic variances.

For example, for the 2000 samples of size 10 at li/t = 1/8, the value

of Q was less than 2.0 1358 times, between 2.0 and 2.6 572 times, between

2.6 and 3.2 66 times and larger than 3.2 4 times. Thus, if T1 is the esti-

mator being considered, even though the population value of Q is 2.05 and

the sample mean, m(0), is the estimator tttt should be chosen, more than

67% of the sample runs choose mC (1/4). The variance for this estimator

could therefore also be expected to be quite different from that of the

sample mean. In fact, mC (1/4) with asymptotic variance .5869, is a good

deal closer to the best trimmed mean or mean of trimmings available for

1/T = 1/8 than the sample mean. Thus the estimator T1 , for samples of

size 10 actually performs considerably better than the asymptotic variance

would suggest. This is reflected in Figure A, and Table 1 where the

variance for samples of size 10 is seen to be .8216, while the asymptotic

value is 1.0. Note that the best available estimator at ^=y 1/8 is a mean

of trimmings with a between .05 and .10, with an asymptotic variance of
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approximately .40. It is seen that in this particular case, the fact

that Q underestimates Q is advantageous.

The estimator T3 exhibits the properties claimed by Prescott in

his concluding section. Particularly for small samples (n < 20) and

long-tail (Y > 1/2) distributions, Q severely underestimates the para-

meter Q. Consequently, the trimming proportion chosen is considerably

smaller than the optimal one, and the resulting variance is considerably

larger than that of the optimal trimmed mean. The performance is some-

what better for shorter-tailed distributions, but still not particularly

impressive.

As the sample size increases however, the continuous adaptation

begins to fare very well. By n = 40, the performance of T3 is as good

as any of the estimators studied. This coinciees with the assertions

made by Prescott.

TABLE I

VARIANCES OF ESTIMATORS Ti, T2' T 3' BASED ON 2000 SAMPLES

1,T .000 .125 .250 .375 .500 .675 .750 .875 .1000

9 1.90 2.05 2.20 2.40 2.58 2.77 2.95 3.13 3.30

- 10 .7692 .8216 1.0124 1.0805 1.1140 1.0608 1.0344 1.0242 .9729
20 .7564 .8670 1.0163 1.0973 1.0592 1.0253 .9388 .8597 .7338

1 h 40 .6710 .8079 1.0428 1.0580 1.0301 .9660 .9302 .7895 .6607

asympt .5000 1.0000 1.0000 1.0000 1.0000 .9389 .8655 .7552 .547R

n - 10 .6327 .7140 .9471 1.0970 1.2435 1.2459 1.2915 1.3711 1.3280
T2  n - 20 .5524 .6763 .8891 1.0750 1.1254 1.1222 1.0657 1.0014 .8285

n - 40 .4570 .5773 .8632 1.0123 1.0719 1.0126 .9871 .8506 .6809
asympt .4000 .5186 .7966 1.0000 1.0000 1.0000 .8632 .7071 .5844

n- 20 .562 .7014 1.0168 1.1937 1.3902 1.3593 1.4454 1.070 1.4302T 3  n -20 .4049 .6605 .9474 1.1645 1.2328 1.1912 1.1152 1.0206 .8595
nk - 40 .2374 .5850 .9262 1.0734 1,1206 1.0497 1.0060 .8530 .6902
asympt .0000 .4259 .7566 .9468 1.0013 .9397 .8575 .6883 SOW0

Cramdr-Rao
Lower bound .0000 .3924 .7295 .9358 1.0000 .9485 .8225 .6626 .5000
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Figure A. ASYMPTOTIC VARIANCE OF T AND VARIANCE USING SAMPLES OF SIZE 10,20 AND 40

c1
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Figure B. ASYMPTOTIC VARIANCE OF T 2AND VARIANCE USING SAMPLES OF SIZE 10,20 AND 40
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Figure C. ASYMPTOTIC VARIANCE OF T 3AND VARIANCE USING SAMPL~ES OF SIZE 1.0,20 AND 40
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Figure D- True Value of Q Minus Average Value ofQ
for 2000 Samples from Exponential Power

Family of Distributions
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5. Concluding Remarks

Investigations using small to moderate sample size indicate that

adapting too closely may not be worth the effort. Q will give only a

general idea of the value of Q, and at small sample sizes gives a value

that is too small. In fact, in a slightly different setting (a two-sample

problem) Randles and Hogg (1973) propose deciding that the underlying

distributions are light, medium, or heavy tailed as

< 2.08 - 2/N,

2.08 - 2/N < Q < 2.96 - 5.5/N,

2.96 - 5.5/N <

respectively, where the samples are of size m and n and N = (m2 + n 2)/m+ n.

In a different discussion, Hogg (1974) recommends an adapting scheme that

uses only one trimmed mean if the sample size is less than or equal to 10,

one of two adaptively chosen trimmed means if 10 < n < 20, one of three

adaptively chosen trimmed means if 20 < n < 30, etc., thus adapting more

closely as the sample size increases. Both of these suggestions and the

current study support Prescott's conclusion that if the sample size is

fairly large (n > 50) the continuously adapting T3 should be a useful robust

estimator, but if n < 50, and particularly if one suspects long-tailed non-

normality, then T2 might be preferable.

6. APPENDIX

In section 4, reference was made to the requirement on a distribution

in order that Q might be asymptotically normal. In Davenport (1971, p. 8),

four conditions on a distribution are described as sufficient to ensure

that asymptotic property. The fourth condition, essentially a requirement

on smoothness of the tails of the distribution, comes directly from Chernoff

(1967, p. 61, Assumption 5). The Chernoff condition can be easily shown to
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be satisfied under the assumption that the distribution is a member of the

exponential power family of distributions (with the exception of T - -, the

uniform distribution, for which the result can be shown directly) by way of

the following theorem which establishes the relationship between the density

and the cumulative distribution function for all members of the family.

Theorem. Let f(x) = 1 exp(-l x 1 T) 1< T < -, the density for a
Theoem. et fx)=2P (l+l/T)

member of the exponential power family, and let F(.) be the corresponding

cumulative distribution function. For any x > 0

T-I r-ITx (1-F(x)) < f(x) < (Tx +(T-1)1/x)(1-F(x)).

Proof: The derivative of f(x) is -TXT- f(x) and the derivative of 1-F(x)

is -f(x) so that

T1
f(x) = f ryT-f(y)dy

x

= -ryT 1 (1-F (y)) + T(T-1) fyt 2 (1-F(y))dy

x

where the second equality follows from integration by parts. The second term in

the latter expression is positive and the first term in that expression is

TXT - 1 (1-F(x)). Thus f(x) > Tx T-(1-F(x)) as desired.

1 l-t
Now replace 1 - F(y) in the second term by its upper bound 1 y f(y)

just obtained and the result is

f(x) < TXT -1 (l-F(x)) + T(T-I) fyT-2 1y1-T f(y)dy
T

x

•~ -Y
TX (I-F(x))+ (T-)! f(y)dy

x

T-1 1
< X (l-F(x)) + (T-1) f f(y)dy

x

-(l-F(x))(TxT-+(r-1)- )-
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Combining gives

Tr-l +t- (lI ) IFxQED

Tx (1-F(x))< f(x) < (Tx T- 1+(T-))(-F (X) Q.E.D.
x

Note that the inequalities are strict for T > 1 and when T = 1, the equality

1 - F(x) = f(x) holds for all x > 0. An equivalent result holds for x < 0

and the two conditions together provide all the necessary machinery to

satisfy the Chernoff requirements.
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